The Mammalian SPD-2 Ortholog Cep192 Regulates Centrosome Biogenesis

نویسندگان

  • Fei Zhu
  • Steffen Lawo
  • Alex Bird
  • Deborah Pinchev
  • Alison Ralph
  • Constance Richter
  • Thomas Müller-Reichert
  • Ralf Kittler
  • Anthony A. Hyman
  • Laurence Pelletier
چکیده

Centrosomes are the major microtubule-organizing centers of mammalian cells. They are composed of a centriole pair and surrounding microtubule-nucleating material termed pericentriolar material (PCM). Bipolar mitotic spindle assembly relies on two intertwined processes: centriole duplication and centrosome maturation. In the first process, the single interphase centrosome duplicates in a tightly regulated manner so that two centrosomes are present in mitosis. In the second process, the two centrosomes increase in size and microtubule nucleation capacity through PCM recruitment, a process referred to as centrosome maturation. Failure to properly orchestrate centrosome duplication and maturation is inevitably linked to spindle defects, which can result in aneuploidy and promote cancer progression. It has been proposed that centriole assembly during duplication relies on both PCM and centriole proteins, raising the possibility that centriole duplication depends on PCM recruitment. In support of this model, C. elegans SPD-2 and mammalian NEDD-1 (GCP-WD) are key regulators of both these processes. SPD-2 protein sequence homologs have been identified in flies, mice, and humans, but their roles in centrosome biogenesis until now have remained unclear. Here, we show that Cep192, the human homolog of C. elegans and D. melanogaster SPD-2, is a major regulator of PCM recruitment, centrosome maturation, and centriole duplication in mammalian cells. We propose a model in which Cep192 and Pericentrin are mutually dependent for their localization to mitotic centrosomes during centrosome maturation. Both proteins are then required for NEDD-1 recruitment and the subsequent assembly of gamma-TuRCs and other factors into fully functional centrosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication.

Polo-like kinase 4 (Plk4) is a key regulator of centriole duplication, but the mechanism underlying its recruitment to mammalian centrioles is not understood. In flies, Plk4 recruitment depends on Asterless, whereas nematodes rely on a distinct protein, Spd-2. Here, we have explored the roles of two homologous mammalian proteins, Cep152 and Cep192, in the centriole recruitment of human Plk4. We...

متن کامل

Tension Distribution within Individual Stress Fibres Bridging the Gap: Insights from Connexin Mutants Lamin Aggregates in Liver Injury a Direct Link between Netrin Signalling and Microtubule Dynamics

CEP192 and CEP152 bring PLK4 to the centriole Centrioles serve as platforms for the assembly of centrosomes, the major microtubule-organizing centres of animal cells, and cilia, and are duplicated once during every cell cycle. Polo-like kinase 4 (PLK4) has been shown to be essential for centriole duplication, but it remains unclear how it is recruited to the centriole in mammalian cells or with...

متن کامل

SPD-2/CEP192 and CDK Are Limiting for Microtubule-Organizing Center Function at the Centrosome

The centrosome acts as the microtubule-organizing center (MTOC) during mitosis in animal cells. Microtubules are nucleated and anchored by γ-tubulin ring complexes (γ-TuRCs) embedded within the centrosome's pericentriolar material (PCM). The PCM is required for the localization of γ-TuRCs, and both are steadily recruited to the centrosome, culminating in a peak in MTOC function in metaphase. In...

متن کامل

Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation

The centriole/basal body is a eukaryotic organelle that plays essential roles in cell division and signaling. Among five known core centriole proteins, SPD-2/Cep192 is the first recruited to the site of daughter centriole formation and regulates the centriolar localization of the other components in C. elegans and in humans. However, the molecular basis for SPD-2 centriolar localization remains...

متن کامل

ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics Short title: RNA-binding Proteins in Centrosome Regulation

Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008